Massively Parallel Distributed Computing:
World’s First 281 Gigaflop Supercomputer

Jerry Bolen, Arlin Davis, Bill Dazey, Satya Gupta, Greg Henry, David Robboy,
Guy Schiffler, David Scott, Mack Stallcup, Amir Taraghi, Stephen Wheat

- Intel Corp.

LeeAnn Fisk, Gabi Istrail, Chu Jong, Rolf Riesen, Lance Shuler
- Sandia National Laboratories

Abstract

This paper describes the Intel and Sandia joint ef-
fort to combine two Intel MP Paragon™" supercomput-
ers via multiple HiPPI channels. This effort broke the
world speed record on the massively parallel LINPACK
benchmark by approxzimately fifty percent, attaining
281.1 GigaFLOPS. The two MP Paragon supercom-
puters operated under the SUNMOS operating system.

Keywords: HiPPI, World
SUNMOS, LINPACK benchmark

record breaking,

1 Introduction

We describe the hardware, the operating system,
the MPLINPACK application, and the HiPPI sub-
system utilized in the Intel and Sandia joint effort to
combine two Intel MP Paragon™ supercomputers via
multiple HiPPI channels. We then focus on the en-
vironment used to allow the two Intel supercomput-
ers, connected via HiPPI, to operate as a single su-
percomputer and describe the optimizations made in
MPLINPACK to achieve this goal. Finally, we show
some modeling of the predicted performance and com-
pare this to our actual results.

1.1 Hardware

The Intel MP Paragon™ XP/S supercomputer
consists of a two-dimensional mesh of nodes arranged
into cabinets of size 16 high by 4 wide [11]. Each
node contains three Intel i860® XP RISC microproces-
sors, capable of 75 MFLOPS ! double precision each.

IMFTLOPS refers to millions of floating point operations per
second. In single precision, the Intel i860® XP is capable of 100

Nodes communicate across the interconnection net-
work at 175 Mbytes/second. Latencies are typically
in the range of 30 microseconds, with special kernels
capable of running less than 10 microseconds [13].

Two Intel MP Paragon supercomputers were used
in this effort. One, the machine purchased by Oak
Ridge National Laboratories, had 1024 MP nodes.
The other had 1232 MP nodes. The combined con-
figuration brought on-line 2256 MP3 nodes, or 6768
i860® processors. Each MP Paragon supercomputer
had 16 HiPPI nodes connected via HiPPI channels to
the other MP Paragon system.

1.2 Operating System

The two systems were running the SUNMOS S1.6.2
operating system. SUNMOS (Sandia and University
of New Mexico Operating System) is a joint collabo-
ration between Sandia National Laboratories and the
University of New Mexico. SUNMOS is copyrighted
by Sandia National Laboratories. 2 SUNMOS is a
high performance operating system with low mem-
ory overhead and delivers a high message bandwidth.
SUNMOS allows application codes to use all three pro-
cessors on each node for computation, as compared to
the current release of Paragon/OS, which uses one of
the three processors as a message co-processor.

1.3 The Code

The demonstration was performed both with the
MP LINPACK benchmark, which is a well known
measure of comparison between high performance su-
percomputers, and a complex double precision variant
of the code. Although the complex version of the code

MFLOPS.
2SUNMOS questions can be forwarded to sunmos-
support@cs.unm.edu.

(henceforth: ZLU) is not a controlled benchmark like
MPLINPACK, ZLU is arguably as significant, since a
large number of real world problems require the so-
lution of a large linear system of complex equations.
The LINPACK benchmark measures the time it takes
to solve a real (double precision, 64 bits) linear system
of equations of size N with a single right-hand side *
[2].

Performance is measured in terms of billions of
floating point operations per second (GFLOPS),
which is 2N%/3 + 2N? where N is the number of un-
knowns (or 8N3/3 for ZLU.) FLOPS reported are real
FLOPS and not “macho” FLOPS based on Strassen
[14] multiplication. Explicit residual bounds were
computed to verify accuracy.

1.4 The HiPPI Subsystem

Communication between the two systems is via
bidirectional HiPPI connections directly from one sys-
tem to the other. Each system has 16 HiPPI nodes,
connected pairwise with the HiPPI nodes in the other
system using a cable in each direction, a total of 32
cables. The 16 bidirectional HiPPI connections corre-
spond logically to one connection per row of compute
nodes; so, in a sense, the HiPPI connections extend the
mesh horizontally across two machines. Each HiPPI
node runs the SUNMOS operating system, which in-
cludes a HiPPI driver. A HiPPI server runs as a
SUNMOS application on each HiPPI node.

On the sending side, sending messages across the
HiPPI line uses a typical I/O paradigm which includes
commands to open the device, send messages, and
close the device. To send a message over the line,
the data is prepended with appropriate header infor-
mation and sent via the mesh to the server on a HiPPI
node on the same machine (See Figure 1). The header
information includes the physical node address of the
final destination compute node.

On the receiving side, the HiPPI server does an
automatic store-and-forward to the destination node.
Thus the destination compute node does not use an
I/0 paradigm, rather it receives a SUNMOS message
on the mesh, which arrives from the HiPPI server in-
stead of from a compute node. The store-and-forward
mechanism is optimized so that the message is sent
to the mesh directly from the HiPPI buffer, it is not

3The latest copy of the MPLINPACK benchmark report can
be obtained via anonymous ftp to netlib.att.com in directory
netlib/benchmark. The relevant file is in binary compressed
mode and is called performance.ps.Z. Equivalently, one could
send e-mail to netlib@att.com and request “send performance
from benchmark”.

Source Compute Node
- Address packet to Destination
- Sends over mesh to HIPPI server

l Mesh

Source HIPPI Node
= Transmits over wire

HIPPI Cable

Viachine Bounda

HIPPI Cable

Destination HIPPI Node

- Forwards message

l Mesh

Destination Compute Node

- Recelves over mesh

Figure 1: HiPPI Subsystem

copied to user space on the HiPPI node before being
forwarded. This model is demonstrated in Figure 1.

To measure the performance of the HiPPI subsys-
tem, we sent a message from machine 1 to machine 2
and back again, measuring the overall round-trip time
on one system. We observed 22 Mbytes/sec overall on
a one megabyte message, which implies 44 Mbytes/sec
one way. There is about 1 milliseconds round trip la-
tency.

More recent experiments were done by Lance
Shuler, who is optimizing the HiPPI driver at Sandia.
He had a one-way experiment that yielded bandwidths
exceeding 50 Mbytes/sec for messages of 128 Kbytes,
using a single HiPPI node. When several messages
were sent at the same time, overall performance im-
proved.

2 The Dual Machine Environment

The front end for the MPLINPACK code was
changed so that there are two separate executables,
for the “left” and “right” machines. Configuration
files tell each machine the layout of HiPPI nodes and
compute nodes for both machines.

At the communication level, when a node needs
to send data to another node, it calls a communica-
tion function with the address of the destination node.
This function was modified to decide whether the des-
tination is local or remote. In case it is remote, the
routine looks up the destination physical node address
in tables, and invokes code to transmit the message.
This routine encases the message in headers, looks up
the address of the HiPPI node corresponding to the
sender’s row in the mesh, and sends the message to the
HiPPI server on the HiPPI node, which sends it over
the wire. In order to prepend the header, short mes-
sages are copied to a buffer that includes the header.
Long messages have the header prepended to them in
place, then the contents of the memory preceding the
message is restored.

On the receiving side, the HiPPI server gets the
destination node address out of the packet and for-
wards the message. The receiving compute node does
not do anything special, it receives a SUNMOS mes-
sage from the HiPPI node as it would from another
compute node. Tables are used to configure the loca-
tions of the HiPPI nodes and the compute nodes on
both systems. All of the HiPPI nodes on each side can
operate in parallel independently of each other.

To summarize the message path:

e Local messages travel over the mesh with essen-
tially no change in the logic.

e For remote messages, the path is

mesh wire
source = HiPPI server ="
mesh

HiPPI server = destination

Remote messages travel on the interconnect of each
machine in addition to the time required over the
HiPPI wire. For example, suppose the message on ma-
chine 1 travels at 150 MB/sec to HiPPI 1, and the mes-
sage on machine 2 goes from HiPPI 2 to the compute
node at 150 MB/sec. If the HiPPI wire represented
“instantaneous” communication, then the overall per-
formance would be bounded by 75 MB/sec. This com-

munication scheme is scalable. That is, nodes can in-
dependently and concurrently gain similar bandwidths
for high aggregate rates.

2.1 MPLINPACK Optimizations

MPLINPACK uses a block two dimensional wrap
mapped data decomposition [7]. With a two dimen-
sional data decomposition, messages flow naturally in
two directions: horizontal and vertical. Horizontal
messages involve the bulk of the communication. As
such, they are pipelined in a ring and overlapped with
the computation. We refer to a node logically by zero-
based row and column number and denote it as such:
(row,column). If there are 10 columns in the left ma-
chine, we denote the top left node of the right machine
as (0,10).

Suppose column 8 of the left machine ((*,8)) is
originating a message to be broadcast horizontally.
For purpose of illustration, we assume that the logi-
cal partitioning of nodes in the algorithm corresponds
to the actual physical locations, although in general
that does not need to be the case. By virtue of the
data decomposition, each row has a separate portion
of the message. For example, nodes in row 0 need to
have access to the data that (0,8) originated, but not
(1,8). Therefore, if there are 16 rows (which is the case
when the logical mapping matches the physical map-
ping), then there are really 16 separate messages all
moving horizontally to the right at the same time in a
ring fashion. That is, node (0,8) sends the message to
(0,9), which in turn sends the message to (0,10), etc..

The horizontal broadcasts move rightward from
a source column and continue in a ring until all
the columns have the message. The source column
changes during the course of the algorithm and may
be on the left machine or may be on the right ma-
chine. When the broadcast reaches the right end of
the left machine, the message is sent over the mesh
to the 16 HiPPI nodes (which could be anywhere in
the machine) and then sent over the HiPPI wires to
the HiPPI nodes on the right machine. Finally, the
message is forwarded to the left end of the right ma-
chine. The same applies when the broadcast reaches
the right end of the right machine (it is then sent via
mesh to the HiPPIs then through the mesh to the
left end of the left machine.) The first observation is
that only nodes along the left and right columns of the
both machines ever need to use the HiPPI connection.
The model we presented was more general than that
because we achieved the additional generality for free.

We found it crucial not to send too many messages
over the HiPPI wires at once since the HiPPI server

we were using had a fixed amount of buffer space.
Handshaking partially solved this problem. A node
would post an irecv for the incoming data, then send
a message saying that it is ready to receive the data.
The sending node would not send the message until
it received the message saying it was okay to send it.
In the mean time, the receiving node might be do-
ing other work. When the receiving node needed to
get the new data, it would block until the data was
in place. This handshaking would prevent data from
subsequent messages from piling up until the receiving
node is ready to use them. Since the sending nodes
usually get the send ready before the nodes to the im-
mediate right are ready, the first set of handshaking is
avoided.

Another observation is in the course of moving
rightward, eventually a horizontal broadcast originat-
ing in the center of the left machine must eventually
pass through the right machine and then back to the
left part of the left machine (or vise versa.) A more
efficient broadcast from a source machine would send
the data to the other machine once, and let each ma-
chine do its own local broadcast. Instead, the naive
rightward only method previously described doubles
the HiPPI traffic volume for no apparent reason; the
data was already on the left machine and so there is
no reason to return the data there.

What we did instead was have the node that is on
the right edge of the source machine pass the message
back to the left part of the same machine. One might
argue that rather than give the nodes on the right edge
this additional send, the nodes in the originating col-
umn could have done the job equally well. However,
the combination of the pipelined nature of the code
and the handshaking means that it makes more sense
for nodes on the boundary to take care of the extra
send (and avoid a performance penalty.) This alter-
native horizontal broadcast reduced the HiPPI traffic
in half.

The next thing done to minimize HiPPI contention
was combining multiple horizontal messages of differ-
ent types into a single message. This enabled all hori-
zontal messages to go through a single code layer. At
each iteration of the code, only one rightward message
was sent across each HiPPI node, paired with a single
leftward handshake. All data, including data of dif-
ferent types (the double precision multipliers and the
integer pivot indices), was combined into this single
message. This optimization reduced N1/2 by nearly
twenty five percent.

The code was also written so that the executable
for the left machine could be used by itself to run a

single machine problem.
2.2 MPLINPACK Modeling

We define the following variables:

= MPLINPACK Problem Size (Matrix Order)
= Number of vertical nodes (rows) in a logical

< =

2D mapping
= Number of horizontal nodes (columns)
= Block size used in the algorithm
Node DGEMM FLOPS rate

Il

K-Column local LU FLOPS rate
= Communication Bandwidth (in bytes / second)

Communication Latency in terms of seconds

QISR N
I

= Average time to Copy long strided arrays of
doubles in seconds

There are nine distinct places that MPLINPACK
spends its time:

1. DGEMM Time:
Assuming K < N,

3

G g

2. Horizontal Broadcast Time:
FEach row must send and receive its portion of the
multipliers, which average NK/2H doubles N/K
times (once for each block.) For the HiPPI exper-
iment, the B variable (for broadcast rate) should
be portionally decreased to reflect the speed of
moving horizontally through the HiPPI.

8KN

2N/K x (—ZVB

+.9) (2)
3. Vertical Broadcast Time:
Each column must participate in a tree synchro-

nization (log(V) messages) of a block averaging
NK/2Q doubles N/K times.

8KN
2HB

log (V)N/K * (+59) (3)
4. DTRSM Time:
At any one time, DTRSM is done by only one
row of nodes. Since all nodes in that column of
nodes must wait, in our model we assume the

Node DTRSM FLOPS rate (in operations / second)

work is done redundantly. The amount of work is
K2N/2H on average, done N/K times.

KN?
2HR @)

. K-Column local LU Work Time:

This is done by a single column of nodes at a time.
On average there is K2N/2H FLOPS and N/KV
local LUs performed by each column.

N2K
2HVU

(5)

. K-Column local LU Communication Time:

To find local pivot requirements, there is a tree
fan in followed by a fan out, followed by the actual
pivot just within the K column.

2log (V) (N/H)(8/B+ S) +
log (V) « (N/H)(8K/B + S) (6)

. Pivoting Time:

The worst case is when when every pivot is off the
node that owns the current block. Then one sends
and receives all the rows (2N) from the current
column to the end of the matrix. This size av-
erages N/2V. We need to also consider the cost
of copying the (2N) rows which average N/2V
size when all the elements are spread by at least
(N/H) doubles.

8N NC
sve T3t o) Q)

2N x (

. Load Imbalance Delays:
Some nodes have more columns/rows than oth-
ers in the DGEMM half the time. There are
N/K DGEMMs total. If one node has K ex-
tra columns, there are 2K?(N/2H) extra FLOPS
(on average) associated with doing the DGEMM.
If one node has K extra rows, this translates to an
extra 2K2(N/2V) FLOPS on average. We mul-
tiply this by N/K for the total number of times,
and divide by two since it only occurs half the
time.

N?K N2K

56+ 3mE ®)

2VG 2HG

. Horizontal Waiting Delays:

The formula is the same as the horizontal time’s
formula. However, for the HiPPI experiment, the
technique used to do local machine broadcasts
indicates one should use the full memory band-
width.

Plugging in NR = 128600, V =141, H = 16, K =
16, G = 134000000, T' = 71000000, U = 11000000,
B = 40—160000000 (the smaller number only in Equa-
tion 2,) S as 30 microseconds, and C = 3.4E —7 yields
a predicted performance of 277.832 GFLOPS *. This
is close to our actual observed rate of 281.049.

3 Results

On 2256 MP nodes, across two MP Paragon
supercomputers, we achieved 281.1 GFLOPS on
MPLINPACK , which is 124.6 MFLOPS/node. This
was done on a matrix of size 128600, with an N1/2 of
25700 [2]. The ZLU code achieved 328 GFLOPS on a
complex matrix of size 90241.

A hypothetical single Paragon system with 2256
MP nodes would be likely to achieve approximately
126 MFLOPS/node on a problem of this size, so the
result of 124.6 MFLOPS/node shows that the perfor-
mance hit from distributing the problem was on the
order of 1 percent.

4 TImpact

The demonstration shows that distributed mas-
sively parallel computing is possible and feasible, and
scalability can be achieved across multiple systems.
Discussions are underway to connect Paragon systems
at remote locations over hundreds or thousands of
miles using the same software technology, to inves-
tigate the scalability characteristics.

Acknowledgements

Many people worked together to make this effort
possible. The Sandia National Labs. scientists were
Rolf Riesen, Gabi Istrail, Lance Shuler, Chu Jong, and
the contractor LeeAnn Fisk of the University of New
Mexico. The Intel scientists were Jerry Bolen, Bill
Dazey, Arlin Davis, Satya Gupta, Greg Henry, David
Robboy, Guy Schiffler, Mack Stallcup, Amir Taraghi,
Stephen Wheat (formerly at SNL) and Bruce White.
Indispensable support and assistance were provided
by Natalie Bates, Bruce Blankinship, Walt Harrison,
Dale Busacker, and others.

The record breaking demo used MPLINPACK. The
MPLINPACK source base used at Intel was originally

4This ignores the final triangular solve, but that takes less
than one tenth of one percent, even on a distributed machine
such as was used here.

developed by Robert van de Geijn of the University
of Texas at Austin. There was a joint Intel and San-
dia MP LINPACK effort which proceeded the record
breaking demo, and this was used to achieve the world
record MPLINPACK performance in May 1994. San-
dians involved in this, not mentioned above, include
David Womble and David Greenberg. Intel scientists,
not mentioned above, include Bob Norin. In addition,
the main DGEMM [5] kernel for MPLINPACK was
written by contractor Brent Leback, and parallelized
by Greg Henry of Intel.

References

[1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra,
J., Du Croz, J., Greenbaum, A., Hammarling, S., McKen-
ney, A., Sorenson, D., LAPACK Users’ Guide, STAM Pub-
lications, Philadelphia, PA, 1992

[2] Dongarra, J. J., Performance of various computers using
standard linear equations software in a Fortran environ-
ment. Computer Science Technical Report CS-89-85, Uni-
versity of Tennessee, 1989

[3] Dongarra, J.J., Bunch, J., Moler, C., Stewart, G.,
LINPACK Users’ Guide, STAM Publications, Philadelphia,
PA, 1979

[4] Dongarra, J. J., Du Croz, J., Hammarling, and Hanson, R.,
An extended set of Fortran Basic Linear Algebra Subpro-
grams., ACM Trans. Math. Software, 14:1-17, 1988

[5] Dongarra, J. J., Du Croz, J., Hammarling, and Duff, I.
S., 1988, A set of Level 3 basic linear algebra subprograms,
Report AERE R 13297. Oxford: Computer Science and
Systems Division, Harwell Laboratory.

[6] Golub, G., Van Loan, C., Matrix Computations, 2nd Ed.,
1989, The John Hopkins University Press.

[7] Hendrickson, B.A., Womble, D.E., The torus-wrap mapping
for dense matriz calculations on massively parallel comput-
ers., SIAM J. Sci. Stat. Comput., 1994

[8] Henry, G., BLAS Based on Block Data Structures, Theory
Center Technical Report, CTC92TR89, 1/92.

[9] Henry, G., Increasing Data Reuse in Eigenvalue Related
Problems, Ph.D. Thesis, Cornell University, January 1994

[10] Henry, G., The COP Interface and MP Linpack: A Sim-
ple Users Guide, Intel SSD Technical Report in Progress,
August 1994

[11] Intel Supercomputer Systems Division, Intel Paragon
XP/S Technical Summary, Document SSD9401R13N, May
1994

[12] Kéagstrom, B., Van Loan, C.F., GEMM-Based Level-3
BLAS, Theory Center Technical Report, CTC91TRA47,
1/91.

[13] Pandit, M., VCF: A Connection Based Message-Passing
Facility, 1994 Annual Users’ Conference Proceedings, Intel
Supercomputer Users Group, San Diego, CA, 6/94

[14] Strassen, V., Gaussian Elimination is not Optimal, Nu-
mer. Math. Vol. 13, 1969, pp. 354-356

[15] van de Geijn, R.A., Massively Parallel LINPACK Bench-
mark on the Intel Touchstone DELTA and iPSC(R)/860
Systems., 1991 Annual Users’ Conference Proceedings. In-
tel Supercomputer Users’ Group, Dallas, TX, 10/91

[16] Winograd, S., A new algorithm for inner product, IEEE
Trans. Comp., Vol. C-37, 1968, pp. 693—694

[17] Womble, D.E., Greenberg, D.S., Wheat, S.R., Riesen, R.,
LU Factorization and the LINPACK benchmark on the In-
tel Paragon, Sandia Technical Report, 1994.

